
1 | P a g e © Maryam shaheen

Computer Science Department

Second Semester 2017/2018

Comp338 – Artificial Intelligence

Instructor: Mustafa Jarrar

Notes + Study guide

Prepared by: Maryam Shaheen

2 | P a g e © Maryam shaheen

Introduction to AI – Chapter1

What is the definition of AI?

 “Intelligence: The ability to learn and solve problems” Webster’s Dictionary

 “Artificial intelligence (AI) is the intelligence exhibited by machines or software”

Wikipedia

 “The science and engineering of making intelligent machines” McCarthy

 “The study and design of intelligent agents, where an intelligent agent is a system that

perceives its environment and takes actions that maximize its chances of success.”

Russel and Norvig AI book

What is AI?
Four schools of thoughts (Russel & Norvig)

 Thinking humanly Thinking rationally

“The exciting new effort to make computers
think... machines with minds, in the full and
literal sense.” (Haugeland, 1985)

“The study of mental faculties through the use
 of computational models.”

 (Charniak & McDermott,1985)

 Acting humanly Acting rationally

“The study of how to make computers do
things which, at the moment, people are
better.” (Rich & Knight, 1991)

“Computational Intelligence is the study of the
 design of intelligent agents.”
 (Poole et al., 1998)

3 | P a g e © Maryam shaheen

What are the foundations of AI?

-Philosophy
Philosophers (going back to 400 B.C.) made AI conceivable by considering the ideas that the mind is in
some ways like a machine, that operates on knowledge encoded in some internal language, and that
thought can be used to choose what actions to take.

-Mathematics
Mathematicians provided the tools to manipulate statements of logical certainty as well as uncertain,
probabilistic statements. They also set the groundwork for understanding computation and reasoning
about algorithms.

-Economics
Economists formalized the problem of making decisions that maximize the expected outcome to the
decision maker.

-Neuroscience
Neuroscientists discovered some facts about how the brain works and the ways in which it is similar
to and different from computers.

-Psychology
Psychologists adopted the idea that humans and animals can be considered information-processing
machines.

-Linguistics
Linguists showed that language use fits into this model.

-Computer engineering
Computer engineers provided the ever-more-powerful machines that make AI applications possible.

-Control theory and cybernetics
Control theory deals with designing devices that act optimally on the basis of feedback from the

environment. Initially, the mathematical tools of control theory were quite different from AI, but the

fields are coming closer together.

4 | P a g e © Maryam shaheen

What are AI Applications?

- Smart Search Algorithms
 Games

 Route finding

 Transportation/scheduling

 Traveling salesperson

 VLSI layout

 Automatic assembly

 …. Many more!

- NLP Applications
 Search engines

 OCR

 Speech recognition

 Machine translation

 Spam fighting

 Information extraction

 Summarization

 Spelling checkers

 Grammar Cheekers

 Sentiment analysis

 …. Many more!

5 | P a g e © Maryam shaheen

- Knowledge base Applications
 Semantic Web

 Expert Systems

 Reasoning

 Logic based games

 System interoperability

 Semantic search

 Medical diagnosis

 …. Many more!

- Machine learning
 Face Recognition

 Autonomous cars

 Social network analysis

 Recommendation systems

 Fraud detection

 Financial forecasting

 …. Many more!

6 | P a g e © Maryam shaheen

Should artificial intelligence simulate natural intelligence?

 No, because artificial intelligence (AI) is intelligence demonstrated by machines, in contrast to the

natural intelligence (NI) that is displayed by humans and other animals.

What are the criticisms on the AI research?

The AI field was founded on the claim that human intelligence "can be so precisely described that a

machine can be made to simulate it". This raises philosophical arguments about the nature of the mind

and the ethics of creating artificial beings endowed with human-like intelligence, issues which have been

explored by myth, fiction and philosophy since antiquity. Some people also consider AI to be a danger to

humanity if it progresses unabatedly. Others believe that AI, unlike previous technological revolutions,

will create a risk of mass unemployment.

7 | P a g e © Maryam shaheen

Intelligent Agents – Chapter2

What is the definition of Intelligent Agent?
It’s an autonomous entity which observes through sensors and acts upon an environment using actuators

(i.e. it is an agent) and directs its activity towards achieving goals (i.e. it is "rational", as defined in

economics). Intelligent agents may also learn or use knowledge to achieve their goals. They may be very

simple or very complex. A reflex machine, such as a thermostat, is considered an example of an intelligent

agent.
 An agent is something that perceives and acts in an environment.

The agent function for an agent specifies the action taken by the agent in response to any percept
sequence.

 The performance measure evaluates the behavior of the agent in an environment.
A rational agent acts so as to maximize the expected value of the performance measure, given the
percept sequence it has seen so far.

 A task environment specification includes the performance measure, the external environment, the
actuators, and the sensors. In designing an agent, the first step must always be to specify the task
environment as fully as possible.
Task environments vary along several significant dimensions. They can be fully or partially observable,
single-agent or multi-agent, deterministic or stochastic, episodic or sequential, static or dynamic, discrete or
continuous, and known or unknown.

 The agent program implements the agent function. There exists a variety of basic agent-program
designs reflecting the kind of information made explicit and used in the decision process. The designs
vary in efficiency, compactness, and flexibility. The appropriate design of the agent program depends
on the nature of the environment.

 Simple reflex agents respond directly to percepts, whereas model-based reflex agents maintain
internal state to track aspects of the world that are not evident in the current percept.
Goal-based agents act to achieve their goals, and utility-based agents try to maximize their own
expected “happiness.”

 All agents can improve their performance through learning.

8 | P a g e © Maryam shaheen

Problem Solving by Search

 Uninformed Search – Chapter 3

 Informed and heuristic Search – Chapter 4

 Constraints Satisfaction – Chapter 5

 Games and Adversarial Search – Chapter 6

Uninformed Search – Chapter 3

This chapter describes one kind of goal-based agent called a problem-solving agent. /

Problem-solving agents use atomic representations

• Before an agent can start searching for solutions, a goal must be identified and a well-defined
problem must be formulated.

A problem consists of five parts:

 the initial state
 a set of actions
 a transition model describing the results of those actions
 a goal test function
 And a path cost function.

The environment of the problem is represented by a state space.

A path through the state space from the initial state to a goal state is a solution.

The following schema to help us formulate problems

1. State
2. Initial state
3. Actions or Successor Function
4. Goal Test
5. Path Cost
6. Solution

9 | P a g e © Maryam shaheen

Examples of problem formulating:

EXP#1: The Romania Example
(From the book)

 State: We regard a problem as state space here a state is a City

 Initial State: the state to start from in(Arad)

 Successor Function: description of the possible actions, give state x, S(X) returns a set of <action,
successor> ordered pairs.
S(x)={ <Go(Sibiu), In(Sibiu)>, <Go(Timisoara), In(Timisoara)>, <Go(Zerind),In(Zerind)> }

 Goal Test: determine a given state is a goal state.
in(Sibiu) No. In(Zerind) No.…. in(Bucharest)Yes!

 Path Cost: a function that assigns a numeric cost to each path.
– e.g., sum of distances, number of actions executed, etc.
– c(x, a, y) is the step cost, assumed to be ≥ 0

 Solution: a sequence of actions leading from the initial state to a goal state

{Arad Sibiu RimnicuVilceaPitesti Bucharest}

10 | P a g e © Maryam shaheen

Real-life Applications

EXP#2: Route Finding Problem

State: locations

Initial state: starting point

Successor function (operators): move from one location to another

Goal test: arrive at a certain location

Path cost: may be quite complex money, time, travel comfort, scenery,

11 | P a g e © Maryam shaheen

Routing Problem

What is the state space for each of them?

 A set of places with links between

them, which have been visited

Travel Salesperson Problem

State:
 locations / cities
 illegal states

- each city may be visited only
once

- visited cities must be kept as
state information

Initial state:

- starting point:

- no cities visited

Successor function (operators):

- move from one location to another one

Goal test:

- all locations visited

- agent at the initial location

Path cost:

- distance between locations

12 | P a g e © Maryam shaheen

Robot Navigation

States:
 –locations
 –position of actuators

Initial state:
 –start position (dependent on the task)

Successor function (operators):
 –movement, actions of actuators

Goal test:
 –task-dependent

Path cost:
–maybe very complex
 •distance, energy consumption

Automatic Assembly Sequencing

State:
–location of components

Initial state:
–no components assembled

Successor function (operators):
–place component

Goal test:
–system fully assembled

Path cost:
–number of moves

13 | P a g e © Maryam shaheen

VLSI layout Problem

State:
–positions of components, wires on a chip

Initial state:
–incremental: no components placed
–Complete-state: all components placed (e.g. randomly,
manually)

Successor function (operators):
–incremental: place components, route wire
–Complete-state: move component, move wire

Goal test:
–all components placed
–components connected as specified

Path cost:
–maybe complex
 •distance, capacity, number of connections per component

Searching for Solutions

 Traversal of the search space

- From the initial state to a goal state.

- Legal sequence of actions as defined by successor function.

 General procedure

- Check for goal state

- Expand the current state

 Determine the set of reachable states

 Return “failure” if the set is empty

- Select one from the set of reachable states

- Move to the selected state

 A search tree is generated

- Nodes are added as more states are visited

14 | P a g e © Maryam shaheen

Search Terminology

 Search Tree

- Generated as the search space is traversed
 The search space itself is not necessarily a tree, frequently it is a graph
 The tree specifies possible paths through the search space

 Expansion of nodes

- As states are explored, the corresponding nodes are expanded by applying the
successor function
 this generates a new set of (child) nodes

 The fringe(frontier/queue) is the set of nodes not yet visited

- newly generated nodes are added to the fringe
 Search strategy

- Determines the selection of the next node to be expanded

- Can be achieved by ordering the nodes in the fringe
 •e.g. queue (FIFO), stack (LIFO), “best” node w.r.t. some measure (cost)

Example: Graph Search

The graph describes the search (state) space

–Each node in the graph represents one state in the search space
 •e.g. a city to be visited in a routing or touring problem

This graph has additional information
 –Names and properties for the states (e.g. S3)
 –Links between nodes, specified by the successor function
 •properties for links (distance, cost, name …)

15 | P a g e © Maryam shaheen

• Search algorithms treat states and actions as atomic: they do not consider any internal structure
they might possess.
• A general TREE-SEARCH algorithm considers all possible paths to find a solution, whereas a
GRAPH-SEARCH algorithm avoids consideration of redundant paths.

 A tree is generated by traversing the graph.
 The same node in the graph may appear repeatedly in the tree.
 The arrangement of the tree depends on the traversal strategy (search method)
 The initial state becomes the root node of the tree
 In the fully expanded tree, the goal states are the leaf nodes.
 Cycles in graphs may result in infinite branches.

16 | P a g e © Maryam shaheen

 Search algorithms are judged on the basis of completeness, optimality, time complexity, and
space complexity. Complexity depends on (b: the branching factor in the state space), and (d: the
depth of the shallowest solution.)

• Uninformed search (blind search) methods have access only to the problem definition.
 • Number of steps and path cost are unknown
 • Agent knows when it reaches a goal

The basic algorithms are as follows:

1. Breadth-first search expands the shallowest nodes first; it is complete, optimal for unit
step costs, but has exponential space complexity.

2. Uniform-cost search expands the node with lowest path cost, g(n), and is optimal for
general step costs.

3. Depth-first search expands the deepest unexpanded node first. It is neither complete nor
optimal, but has linear space complexity.

4. Depth-limited search adds a depth bound.

5. Iterative deepening search calls depth-first search with increasing depth limits until a

goal is found. It is complete, optimal for unit step costs, has time complexity comparable to
breadth-first search, and has linear space complexity.

6. Bidirectional search can enormously reduce time complexity, but it is not always
applicable and may require too much space.

Evaluation of Search Strategies

 A search strategy is defined by picking the order of node expansion

 Strategies are evaluated along the following dimensions:

- Completeness: if there is a solution, will it be found

- Time complexity: How long does it takes to find the solution

- Space complexity: memory required for the search

- Optimality: will the best solution be found

 Time and space complexity are measured in terms of

- b: maximum branching factor of the search tree

- d: depth of the least-cost solution

- m: maximum depth of the state space (may be ∞)

17 | P a g e © Maryam shaheen

 1- Breadth-First-Search (BFS)

• Completeness: Yes (if b is finite), a solution will be found if exists.

• Time Complexity: 1+b+𝑏2+𝑏3+… + 𝑏𝑑+ (bd+1-b) = 𝑏𝑑+1 (nodes until the solution)

• Space Complexity: 𝑏𝑑+1(keeps every generated node in memory)

• Optimality: Yes (if cost = 1 per step)

Suppose the branching factor b = 10 and the

goal is at depth d=12

–Then we need Operation 1012 time to finish. If

Operation is 0.001 second, then we need 1 billion seconds (31 year). And if

each Operation costs 10 bytes to store, then we also need 1 terabytes.

 Not suitable for searching large graphs

Applications/ Uses
Breadth-first search can be used to solve many problems in graph theory, for example:

 Copying garbage collection, Cheney's algorithm

 Finding the shortest path between two nodes u and v, with path length measured by
number of edges (an advantage over depth-first search)

 (Reverse) Cuthill–McKee mesh numbering

 Ford–Fulkerson method for computing the maximum flow in a flow network

 Serialization/Deserialization of a binary tree vs serialization in sorted order, allows the
tree to be re-constructed in an efficient manner.

 Constructions of the failure function of the Aho-Corasick pattern matcher.

 Testing bipartiteness of a graph.

https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Cheney%27s_algorithm
https://en.wikipedia.org/wiki/Shortest_path
https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Cuthill%E2%80%93McKee_algorithm
https://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm
https://en.wikipedia.org/wiki/Maximum_flow_problem
https://en.wikipedia.org/wiki/Flow_network
https://en.wikipedia.org/wiki/Aho-Corasick
https://en.wikipedia.org/wiki/Bipartite_graph#Testing_bipartiteness

18 | P a g e © Maryam shaheen

19 | P a g e © Maryam shaheen

20 | P a g e © Maryam shaheen

21 | P a g e © Maryam shaheen

Breadth-First-Search (BFS) Algorithm:

1. en-queue the root/initial node.

2. de-queue a node and examine it.

1. If the element sought is found in this node, quit the search and return a result.

2. Otherwise enqueuer any successors (the direct child nodes) that have not yet been discovered.

3. If the queue is empty, every node on the graph has been examined –quit the search and return "not

found".

4. Repeat from Step 2.

 Java Code:

Video: https://goo.gl/xkE1yf

Tracing Program: https://goo.gl/wRFjub

// prints BFS traversal from a given source s

 void BFS(int s){

 // Mark all the vertices as not visited(By default
 // set as false)
 boolean visited[] = new boolean[V];

 // Create a queue for BFS
 LinkedList<Integer> queue = new LinkedList<Integer>();

 // Mark the current node as visited and enqueue it
 visited[s]=true;
 queue.add(s);

 while(queue.size() != 0){
 // Dequeue a vertex from queue and print it
 s = queue.poll();
 System.out.print(s+" ");

 // Get all adjacent vertices of the dequeued vertex s
 // If a adjacent has not been visited, then mark it
 // visited and enqueue it
 Iterator<Integer> i = adj[s].listIterator();
 while(i.hasNext()){
 int n = i.next();
 if(!visited[n]){
 visited[n] = true;
 queue.add(n);
 }
 }
 }
 }

www.geeksforgeeks.org

https://goo.gl/xkE1yf
https://goo.gl/wRFjub

22 | P a g e © Maryam shaheen

2-Uniform-Cost –Search (UCS):
In some fields, artificial intelligence in particular, Dijkstra's algorithm or a variant of it, is known as uniform cost

search and formulated as an instance of the more general idea of best-first search.

BUT, the difference between uniform cost search and Dijkstra's algorithm is that UCS has a goal

 Visits the next node which has the least total cost from the root, until a goal state is reached.

- Similar to BREADTH-FIRST, but with an evaluation of the cost for each reachable node.

- g(n) = path cost(n) = sum of individual edge costs to reach the current node.

• Completeness: Yes (if b is finite, and step cost is positive)

• Time Complexity: much larger than 𝑏𝑑, and just 𝑏𝑑 if all steps have the same cost.

• Space Complexity: as above

• Optimality: Yes

 Requires that the goal test being applied when a node is removed from the

nodes list rather than when the node is first generated while its parent node

is expanded.

Video: https://goo.gl/RfZaxb

Video: https://www.youtube.com/watch?v=0u78hx-66Xk

https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Best-first_search
https://goo.gl/RfZaxb
https://www.youtube.com/watch?v=0u78hx-66Xk

23 | P a g e © Maryam shaheen

Java Code:

public static void UniformCostSearch(Node source, Node goal) {
 source.pathCost = 0;
 PriorityQueue<Node> queue = new PriorityQueue<Node>(20, new Comparator<Node>() {
 // override compare method
 public int compare(Node i, Node j) {
 if (i.pathCost > j.pathCost) {
 return 1;
 }
 else if (i.pathCost < j.pathCost) {
 return -1;
 }
 else {
 return 0;
 }
 }
 }
);
 queue.add(source);
 Set<Node> explored = new HashSet<Node>();
 boolean found = false;
 // while frontier is not empty
 do {Node current = queue.poll();
 explored.add(current);
 if (current.value.equals(goal.value)) {
 found = true;
 }for (Edge e : current.adjacencies) {
 Node child = e.target;
 double cost = e.cost;
 child.pathCost = current.pathCost + cost;
 if (!explored.contains(child) && !queue.contains(child)) {
 child.parent = current;
 queue.add(child);
 System.out.println(child);
 System.out.println(queue);
 System.out.println();
 }
 else if ((queue.contains(child)) && (child.pathCost > current.pathCost + cost)) {
 child.parent = current;
 child.pathCost = current.pathCost + cost;
 queue.remove(child);
 queue.add(child);
 }
 }
 } while (!queue.isEmpty());
 }

stackoverflow.com

24 | P a g e © Maryam shaheen

25 | P a g e © Maryam shaheen

Breadth-First vs. Uniform-Cost

 Breadth-first search (BFS) is a special case of uniform-cost search when all edge costs are positive

and identical.

 Breadth-first always expands the shallowest node

- Only optimal if all step-costs are equal

 Uniform-cost considers the overall path cost

- Optimal for any (reasonable) cost function

 non-zero, positive

- Gets stuck down in trees with many fruitless, short branches

 low path cost, but no goal node

 Both are complete for non-extreme problems

- Finite number of branches

- Strictly positive search function

26 | P a g e © Maryam shaheen

b: maximum branching factor

of the search tree

d: depth of the least-cost

solution

m: maximum depth of the

state space (may be ∞)

3-Depth-First Search (DFS):

 A depth-first-search (DFS) explores a path all the way

to a leaf before backtracking and exploring another

path.

 For example, after searching A, then B, then D, the

search backtracks and tries another path from B.

 Node are explored in the order

 A B D E H L M N I O P C F G J K Q

 (root-left-right)

• Completeness: No: fails in infinite-depth spaces, spaces with loops

- Modify to avoid repeated states along path

- complete in finite spaces

• Time Complexity: O(𝑏𝑚): terrible if m is much larger than d

- but if solutions are dense, may be much

faster than breadth-first

• Space Complexity: 𝑂(𝑏𝑚), 𝑖. 𝑒. , 𝑙𝑖𝑛𝑒𝑎𝑟 𝑠𝑝𝑎𝑐𝑒!

• Optimality: No.

27 | P a g e © Maryam shaheen

Depth-First-Search Algorithm:

Algorithm1:
 Put the root node on a stack;
 while (stack is not empty) {

 remove a node from the stack;

 if (node is a goal node)

 return success;

 put all children of node onto the stack;

 } return failure;

 At each step, the stack contains some nodes from each of a number of levels

- The size of stack that is required depends on the branching factor b

- While searching level n, the stack contains approximately (b-1)*n nodes

 When this method succeeds, it doesn’t give the path

Algorithm2: (recursive)
Search (node);

 if node is a goal, return success;

 for each child c of node {

 if search(c) is successful, return success;

} return failure;

 The (implicit) stack contains only the nodes on a path from the root to a goal

- The stack only needs to be large enough to hold the deepest search path

- When a solution is found, the path is on the (implicit) stack, and can be extracted as the

recursion “unwinds”

Video: https://goo.gl/kWrqNH

https://goo.gl/kWrqNH

28 | P a g e © Maryam shaheen

Example:

Java Code:

 // A function used by DFS
 void DFSUtil(int v,boolean visited[])
 {
 // Mark the current node as visited and print it
 visited[v] = true;
 System.out.print(v+" ");

 // Recur for all the vertices adjacent to this vertex
 Iterator<Integer> i = adj[v].listIterator();
 while (i.hasNext())
 {
 int n = i.next();
 if (!visited[n])
 DFSUtil(n,visited);
 }
 }

 // The function to do DFS traversal. It uses recursive DFSUtil()
 void DFS()
 {
 // Mark all the vertices as not visited(set as
 // false by default in java)
 boolean visited[] = new boolean[V];

 // Call the recursive helper function to print DFS traversal
 // starting from all vertices one by one
 for (int i=0; i<V; ++i)
 if (visited[i] == false)
 DFSUtil(i, visited);
 }

www.geeksforgeeks.org

29 | P a g e © Maryam shaheen

Depth-First vs. Breadth-First

 Depth-first goes off into one branch until it reaches a leaf node

- Not good if the goal is on another branch

- Neither complete nor optimal

- Uses much less space than breadth-first

 Much fewer visited nodes to keep track, smaller fringe

 Breadth-first is more careful by checking all alternatives

- Complete and optimal (Under most circumstances)

- Very memory-intensive

 For a large tree, breadth-first search memory requirements maybe excessive

 For a large tree, a depth-first search may take an excessively long time to find even a very nearby goal

node.

30 | P a g e © Maryam shaheen

How can we combine the advantages (and avoid the disadvantages) of these two search

techniques?

 by Iterative-Deepening-Search

 Advantages Disadvantages

Breadth-First-Search - will never get trapped
 exploring the useless path
forever.

- If there is a solution, BFS
 will definitely find it out.

- If there is more than one
solution then BFS can find
the minimal one that
requires less number of
steps.

- its memory requirement. Since each
 level of the tree must be saved in
 order to generate the next level, and
 the amount of memory is proportional to the
number of nodes stored, the space
 complexity of BFS is O(𝒃𝒅). As a
 result, BFS is severely space-bound
 in practice so will exhaust the
 memory available on typical
 computers in a matter of minutes.

- If the solution is farther away from
the root, breath first search will
 consume lot of time.

Depth-First-Search memory requirement is only linear
 with respect to the search graph

- there is a possibility that it may go
down the left-most path forever.
 Even a finite graph can generate an
 infinite tree

- not guaranteed to find the solution

- no guarantee to find a minimal
solution, if more than one solution
 exists.

31 | P a g e © Maryam shaheen

4-Depth-limited Search (DLS):

Similar to Depth-First-Search, but with a limit

- i.e., nodes at depth / have no successors

- Overcomes problems with infinite paths

- Sometimes a depth limit can be inferred or estimated from the problem description

 In other cases, a good depth limit is only known when the problem is solved

- must keep track of the depth

• Completeness: no (if goal beyond l (l<d), or infinite branch length)

• Time Complexity: 𝑏𝐿

• Space Complexity: b*L

• Optimality: No (if L<d).

Depth-limited Search Algorithm:

function IDDFS(root)

 for depth from 0 to ∞

 found ← DLS(root, depth)

 if found ≠ null

 return found

function DLS(node, depth)

 if depth = 0 and node is a goal

 return node

 if depth > 0

 for each child of node

 found ← DLS(child, depth−1)

 if found ≠ null

 return found

 return null

32 | P a g e © Maryam shaheen

Java Code:

Video: https://goo.gl/ufJNxM

public void depthLimitedSearch(int adjacencyMatrix[][], int source) {

 int visited[] = new int[numberOfNodes + 1];

 int element, destination;

 int depth = 0;

 System.out.println(source + " at depth " + depth);

 stack.push(source);

 visited[source] = 1;

 depth = 0;

 while (!stack.isEmpty()){

 element = stack.peek();

 destination = element;

 while (destination <= numberOfNodes){

 if (depth < MAX_DEPTH){

 if (adjacencyMatrix[element][destination] == 1 && visited[destination] == 0){

 stack.push(destination);

 visited[destination] = 1;

 depth++;

 System.out.println(destination + " at depth " + depth);

 element = destination;

 destination = 1;

 }

 }

 else{

 return;

 }

 destination++;

 }

 stack.pop();

 depth--;

 }

 }

http://www.sanfoundry.com

https://goo.gl/ufJNxM

33 | P a g e © Maryam shaheen

5-Iterative-Deepening-Search(IDS):

Applies LIMITED-DEPTH with increasing depth limits

 Combines advantages of BREADTH-FIRST and DEPTH-FIRST

 It searches to depth 0 (root only), then if that fails it searches to depth 1, then depth 2,

etc.

Iterative-Deepening-Search Algorithm:

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or
failure
for depth = 0 to∞ do
result ←DEPTH-LIMITED-SEARCH(problem, depth)
if result ≠ cutoff then return result

Java Code:

Video: https://goo.gl/CzRhmt

Tracing Program: https://goo.gl/T82Usf

public void iterativeDeeping(int adjacencyMatrix[][], int destination){

 numberOfNodes = adjacencyMatrix[1].length – 1;

 while (!goalFound){

 depthLimitedSearch(adjacencyMatrix, 1, destination);

 maxDepth++;

 }

 System.out.println(“nGoal Found at depth ” + depth);

 }

http://code-library.net/

https://goo.gl/CzRhmt
https://goo.gl/T82Usf

34 | P a g e © Maryam shaheen

Example:

35 | P a g e © Maryam shaheen

Iterative Deepening Depth-First Search (IDDFS)

 If a goal node is found, it is a nearest node and the path to it is on the stack.

 Required stack size is limit of search depth (plus 1).

 Many states are expanded multiple times

 doesn’t really matter because the number of those nodes is small

 In practice, one of the best uninformed search methods

 for large search spaces, unknown depth

• Completeness: Yes (if b is finite)

• Time Complexity: (d+1)𝑏0+ d 𝑏1+ (d-1) 𝑏2+ …… + 𝑏𝑑= O(𝑏𝑑)

• Space Complexity: O(b*d)

• Optimality: Yes, if step cost =1

• The nodes in the bottom level (level d) are generated once, those on the next bottom

level are generated twice, and so on:

 𝑁𝐼𝐷𝑆= (d)b + (d-1) 𝑏2+ … + (1) 𝑏𝑑

Time complexity = 𝑏𝑑

 Compared with BFS:

 𝑁𝐵𝐹𝑆= b + 𝑏2… + 𝑏𝑑+ (𝑏𝑑+1 –b)

 Suppose b = 10, d = 5,

 𝑁𝐼𝐷𝑆 = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

 𝑁𝐵𝐹𝑆 = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111

 IDS behaves better in case the search space is large and the depth of goal is unknown.

36 | P a g e © Maryam shaheen

 When searching a binary tree to depth 7:

- DFS requires searching 255 nodes

- Iterative deepening requires searching 502 nodes

- Iterative deepening takes only about twice as long

 When searching a tree with branching factor of 4 (each node may have four children):

- DFS requires searching 21845 nodes

- Iterative deepening requires searching 29124 nodes

- Iterative deepening takes about 4/3 = 1.33 times as long

 The higher the branching factor, the lower the relative cost of iterative deepening

depth first search

6-Bi-directional-Search (BDS):

 Search simultaneously from two directions

- Forward from the initial and backward from the goal state, until they meet in the

middle (i.e., if a node exists in the fringe of the other).

- The idea is to have (𝑏𝑑/2+ 𝑏𝑑/2) instead of bd, which much less

 May lead to substantial savings (if it is applicable), but is has several limitations

- Predecessors must be generated, which is not always possible

- Search must be coordinated between the two searches

- One search must keep all nodes in memory

• Completeness: Yes (if b is finite, breadth-first for both directions)

• Time Complexity: 𝑏𝑑/2

• Space Complexity: 𝑏𝑑/2

• Optimality: yes (all step costs identical, breadth-first for both directions)

37 | P a g e © Maryam shaheen

Summary

 Problem formulation usually requires abstracting away real-world details to define a

state space that can feasibly be explored.

 Variety of uninformed search strategies

Criterion
Breadth-
 First

Depth-
 First

Depth-
 Limited

Uniform-Cost
Iterative
Deepening

Bidirectional
(if applicable)

Complete? Yes No No Yes Yes Yes

Time O(𝑏𝑑) O(𝑏𝑚) O(𝑏𝐿) O(𝑏1 + [𝐶∗/€) O(𝑏𝑑) O(𝑏𝑑/2)

Space O(𝑏𝑑) O(𝑏𝑚) O(bL) O(𝑏1 + [𝐶∗/€) O(bd) O(𝑏𝑑/2)

Optimal? Yes No No Yes Yes Yes

Iterative deepening search uses only linear space and not much more time than other

uninformed algorithms

 Breadth-first search (BFS) and depth-first search (DFS) are the foundation for all other

search techniques.

- We might have a weighted tree, in which the edges connecting a node to its

children have differing “weights”

 We might therefore look for a “least cost” goal

 The searches we have been doing are blind searches, in which we have no prior

information to help guide the search

38 | P a g e © Maryam shaheen

Summary (When to use what)

 Breadth-First Search:

- Some solutions are known to be shallow

 Uniform-Cost Search:

- Actions have varying costs

- Least cost solution is the required

This is the only uninformed search that worries about costs.

 Depth-First Search:

- Many solutions exist

- Know (or have a good estimate of) the depth of solution

 Iterative-Deepening Search:

- Space is limited and the shortest solution path is required

Improving Search Methods

 Make algorithms more efficient

- avoiding repeated states

 Use additional knowledge about the problem

- properties (“shape”) of the search space

 more interesting areas are investigated first

- pruning of irrelevant areas

 areas that are guaranteed not to contain a solution can be discarded.

39 | P a g e © Maryam shaheen

Informed Search – Chapter 4

• Informed search (Heuristic search) methods may have access to a heuristic function
h(n) that estimates the cost of a solution from n.
 • Agent has background information about the problem
 – map, costs of actions

The basic algorithms are as follows:

• The generic best-first search algorithm selects a node for expansion according to an
evaluation function.

• Greedy best-first search expands nodes with minimal h(n). It is not optimal but is
often efficient.

• A∗ search expands nodes with minimal f(n) = g(n) + h(n). A∗ is complete and
optimal, provided that h(n) is admissible (for TREE-SEARCH) or consistent (for
GRAPH-SEARCH). The space complexity of A∗ is still prohibitive.

• RBFS (recursive best-first search) and SMA∗ (simplified memory-bounded A∗)
• are robust, optimal search algorithms that use limited amounts of memory; given

enough time, they can solve problems that A∗ cannot solve because it runs out of
memory.

• The performance of heuristic search algorithms depends on the quality of the heuristic
function. One can sometimes construct good heuristics by relaxing the problem
definition, by storing precomputed solution costs for sub-problems in a pattern database,
or by learning from experience with the problem class.

40 | P a g e © Maryam shaheen

1-Best-First search (BFS):

• Idea: use an evaluation function f(n) for each node

- family of search methods with various evaluation functions (estimate of

"desirability“)

- usually gives an estimate of the distance to the goal

- often referred to as heuristics in this context

Expand most desirable unexpanded node.

A heuristic function ranks alternatives at each branching step based on the available

information (heuristically) in order to make a decision about which branch to follow

during a search.

• Implementation:

Order the nodes in fringe in decreasing order of desirability.

• Special cases:

- greedy best-first search

- A*search

41 | P a g e © Maryam shaheen

Greedy best-first search

• Greedy best-first search expands the node that appears to be closest to goal.

• Estimate of cost from n to goal, e.g., hSLD(n) = straight-line distance from n to Bucharest.

Utilizes a heuristic function as evaluation function

– f (n) = h (n) = estimated cost from the current node to a goal.

– Heuristic functions are problem-specific.

– Often straight-line distance for route-finding and similar problems.

– Often better than depth-first, although worst-time complexities are equal or worse

(space).

Algorithm:

42 | P a g e © Maryam shaheen

Example:

43 | P a g e © Maryam shaheen

44 | P a g e © Maryam shaheen

Properties of greedy best-first search

Complete: No – can get stuck in loops (e.g., Iasi Neamt Iasi

Neamt ….)

Time: O(𝑏𝑚), but a good heuristic can give significant improvement

Space: O(𝑏𝑚), -- keeps all nodes in memory

Optimal: No

A* search

Idea: avoid expanding paths that are already expensive.

Evaluation function = path cost + estimated cost to the goal

 f(n) = g(n) + h(n)

- g(n) = cost so far to reach n

- h(n) = estimated cost from n to goal

- f(n) = estimated total cost of path through n to goal

Combines greedy and uniform-cost search to find the (estimated) cheapest path through the

current node

– Heuristics must be admissible

• Never overestimate the cost to reach the goal

– Very good search method, but with complexity problems

45 | P a g e © Maryam shaheen

Algorithm:

Example:

46 | P a g e © Maryam shaheen

47 | P a g e © Maryam shaheen

48 | P a g e © Maryam shaheen

Admissible Heuristics

A heuristic h(n) is admissible if for every node n, h(n) ≤ h*(n), where h*(n) is the true cost to

reach the goal state from n.

An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic.

The heuristic function hSLD(n) is admissible because it never overestimates the actual road

distance)

Theorem-1: If h(n) is admissible, A* using TREE-SEARCH is optimal.

49 | P a g e © Maryam shaheen

Optimality of A* (proof)

Recall that f(n) = g(n) + h(n)

Now, suppose some suboptimal goal G2 has been generated and is in the fringe. Let n be an

unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

We want to prove:

f(n) < f(G2)

 (Then A* will prefer n over G2)

f(G2) = g(G2) since h(G2) = 0

g(G2) > g(G) since G2 is suboptimal

f(G) = g(G) since h(G) = 0

Then f(G2) > f(G) from above

 h(n) ≤ h*(n) since h is admissible

 g(n) + h(n) ≤ g(n) + h*(n)

Then f(n) ≤ f(G)

Thus, A* will never select G2 for expansion

In other words:

F (G2) = g(G2) + h(G2) = g(G2) > C*,

 since G2 is a goal on a non-optimal path (C* is the optimal cost)

f (n) = g(n) + h(n) ≤ C*, since h is admissible

f (n) ≤ C* < f (G2), so G2 will never be expanded

A* will not expand goals on sub-optimal paths

50 | P a g e © Maryam shaheen

Properties of A*

• Complete: Yes,

 unless there are infinitely many nodes with f ≤ f (G)

• Time: Exponential,

 because all nodes such that f (n) ≤ C* are expanded!

• Space: Keeps all nodes in memory fringe is exponentially large

• Optimal: Yes

Memory Bounded Heuristic Search

How can we solve the memory problem for A* search?

Idea: Try something like Iterative Deeping Search, but the cutoff is f-cost (g+h) at each

iteration, rather than depth first.

Two types of memory bounded heuristic searches:

 Recursive BFS

SMA*

51 | P a g e © Maryam shaheen

Recursive Best First Search (RBFS)

RBFS changes its mind very often in practice.

This is because the f=g+h become more accurate

(less optimistic) as we approach the goal. Hence,

higher level nodes have smaller f-values and will

be explored first.

Problem? If we have more memory we cannot

 make use of it.

Ay idea to improve this?

 Simple Memory Bounded A* (SMA*)

Simple Memory Bounded A* (SMA*)

• This is like A*, but when memory is full we delete the worst node (largest f-value).

• Like RBFS, we remember the best descendent in the branch we delete.

• If there is a tie (equal f-values) we first delete the oldest nodes first.

• SMA* finds the optimal reachable solution given the memory constraint.

• But time can still be exponential.

52 | P a g e © Maryam shaheen

SMA* pseudocode

SMA* is a shortest path algorithm based on the A* algorithm.

The advantage of SMA* is that it uses a bounded memory, while the A* algorithm might need

exponential memory.

All other characteristics of SMA* are inherited from A*.

function SMA*(problem) returns a solution sequence
 inputs: problem, a problem
 static: Queue, a queue of nodes ordered by f-cost
 Queue MAKE-QUEUE ({MAKE-NODE(INITIAL-STATE[problem])})
 loop do
 if Queue is empty then return failure
 n deepest least-f-cost node in Queue
 if GOAL-TEST(n) then return success
 s NEXT-SUCCESSOR(n)
 if s is not a goal and is at maximum depth then
 f(s) ∞
 else
 f(s) MAX(f(n),g(s)+h(s))
 if all of n’s successors have been generated then
 update n’s f-cost and those of its ancestors if necessary
 if SUCCESSORS(n) all in memory then remove n from Queue
 if memory is full then
 delete shallowest, highest-f-cost node in Queue
 remove it from its parent’s successor list
 insert its parent on Queue if necessary
 insert s in Queue
 end

53 | P a g e © Maryam shaheen

How it works:

• Like A*, it expands the best leaf until memory is full.

• Drops the worst leaf node- the one with the highest f-value.

• Like RBFS, SMA* then backs up the value of the forgotten node to its parent.

Example with 3-node memory:

Progress of SMA*:

 Each node is labeled with its current f-cost. Values in parentheses show the value of the

best forgotten descendant.

∞ is given to nodes that the path up to it uses all available memory.

Can tell when best solution found within memory constraint is optimal or not.

54 | P a g e © Maryam shaheen

The Algorithm proceeds as follows:

SMA* Properties

• It works with a heuristic, just as A*

• It is complete if the allowed memory is high enough to store the shallowest solution.

• It is optimal if the allowed memory is high enough to store the shallowest optimal

solution, otherwise it will return the best solution that fits in the allowed memory.

• It avoids repeated states as long as the memory bound allows it

• It will use all memory available.

• Enlarging the memory bound of the algorithm will only speed up the calculation.

• When enough memory is available to contain the entire search tree, then calculation has

an optimal speed

55 | P a g e © Maryam shaheen

Admissible heuristics

E.g., for the 8-puzzle:

h1 (n) = number of misplaced tiles

h2 (n) = total Manhattan distance (i.e., no. of squares from desired location of each tile)

h1(S) = 8

h2(S) = 3+1+2+2+2+3+3+2 = 18

Dominance

If h2 (n) ≥ h1(n) for all n, and both are admissible. then h2 dominates h1

h2 is better for search: it is guaranteed to expand less nodes.

Typical search costs (average number of nodes expanded):

 d=12

 IDS = 3,644,035 nodes

 A*(ℎ1) = 227 nodes

 A*(ℎ2) = 73 nodes

 d=24

 IDS = too many nodes

 A*(ℎ1) = 39,135 nodes

 A*(ℎ2) = 1,641 nodes

What to do If we have ℎ1…ℎ𝑚, but none dominates the other?

 h(n) = max{ℎ1 (n), . . . ℎ𝑚 (n)}

56 | P a g e © Maryam shaheen

Relaxed Problems

A problem with fewer restrictions on the actions is called a relaxed problem.

The cost of an optimal solution to a relaxed problem is an admissible heuristic for the

original problem.

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then ℎ1 (n) gives

the shortest solution.

If the rules are relaxed so that a tile can move to any near square, then ℎ2 (n) gives the

shortest solution.

Admissible Heuristics

How can you invent a good admissible heuristic function?

Try to relax the problem, from which an optimal solution can be found easily.

 Learn from experience.

Can machines invite an admissible heuristic automatically?

57 | P a g e © Maryam shaheen

References:

1. S. Russell and P. Norvig: Artificial Intelligence: A Modern Approach Prentice Hall, Third

Edition

2. Dr. Mustafa Jarrar’s Slides & Videos: http://www.jarrar.info/courses/AI/

3. Wikipedia: https://en.wikipedia.org/wiki/Artificial_intelligence

 http://en.wikipedia.org/wiki/SMA*

4. Geeks For Geeks: https://www.geeksforgeeks.org

5. Stack overflow: https://stackoverflow.com

6. http://en.wikipedia.org/wiki/SMA*

7. Moonis Ali: Lecture Notes on Artificial Intelligence:

http://cs.txstate.edu/~ma04/files/CS5346/SMA%20search.pdf

8. Max Welling: Lecture Notes on Artificial Intelligence:

https://www.ics.uci.edu/~welling/teaching/ICS175winter12/A-starSearch.pdf

9. Kathleen McKeown: Lecture Notes on Artificial Intelligence:

http://www.cs.columbia.edu/~kathy/cs4701/documents/InformedSearch-AR-print.ppt

10. Franz Kurfess: Lecture Notes on Artificial Intelligence:

http://users.csc.calpoly.edu/~fkurfess/Courses/Artificial-Intelligence/F09/Slides/3-

Search.ppt

http://www.jarrar.info/courses/AI/
https://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/SMA*
https://www.geeksforgeeks.org/
https://stackoverflow.com/
http://en.wikipedia.org/wiki/SMA*
http://cs.txstate.edu/~ma04/files/CS5346/SMA%20search.pdf
https://www.ics.uci.edu/~welling/teaching/ICS175winter12/A-starSearch.pdf
http://www.cs.columbia.edu/~kathy/cs4701/documents/InformedSearch-AR-print.ppt
http://users.csc.calpoly.edu/~fkurfess/Courses/Artificial-Intelligence/F09/Slides/3-Search.ppt
http://users.csc.calpoly.edu/~fkurfess/Courses/Artificial-Intelligence/F09/Slides/3-Search.ppt

